
Mining K-mers of Various Lengths in Biological
Sequences

Jingsong Zhang1, Jianmei Guo2, Xiaoqing Yu3, Xiangtian Yu1, Weifeng Guo4,
Tao Zeng1(B), and Luonan Chen1,5(B)

1 Institute of Biochemistry and Cell Biology,
Shanghai Institutes for Biological Sciences,

Chinese Academy of Sciences, Shanghai 200031, China
jasun@dmbio.info, graceyu1985@163.com, {zengtao,lnchen}@sibs.ac.cn

2 Department of Computer Science and Engineering,
East China University of Science and Technology, Shanghai 200237, China

gjm@ecust.edu.cn
3 Department of Applied Mathematics, Shanghai Institute of Technology,

Shanghai 201418, China
xqyu@sit.edu.cn

4 School of Automation, Northwestern Polytechnical University, Xi’an 710072, China
shaonianweifeng@126.com

5 Collaborative Research Center for Innovative Mathematical Modelling,
Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan

Abstract. Counting the occurrence frequency of each k-mer in a bio-
logical sequence is an important step in many bioinformatics applica-
tions. However, most k-mer counting algorithms rely on a given k to
produce single-length k-mers, which is inefficient for sequence analysis
for different k. Moreover, existing k-mer counters focus more on DNA
sequences and less on protein ones. In practice, the analysis of k-mers
in protein sequences can provide substantial biological insights in struc-
ture, function and evolution. To this end, an efficient algorithm, called
VLmer (Various Length k-mer mining), is proposed to mine k-mers of
various lengths termed vl-mers via inverted-index technique, which is
orders of magnitude faster than the conventional forward-index method.
Moreover, to the best of our knowledge, VLmer is the first able to mine
k-mers of various lengths in both DNA and protein sequences.

Keywords: Sequential pattern mining · K-mer counting · K-mers of
various lengths · Biological sequence analysis

1 Introduction

K-mer counting, which identifies frequent contiguous subsequences of length-k
in a sequence database, is a fundamental data-mining problem with broad appli-
cations, including genome assembly [1], error correction of sequencing reads [2],

J. Zhang and J. Guo—Contributed equally to this work.

c© Springer International Publishing AG 2017
Z. Cai et al. (Eds.): ISBRA 2017, LNBI 10330, pp. 186–195, 2017.
DOI: 10.1007/978-3-319-59575-7 17

V L-mer Mining 187

protein-protein interaction prediction [3], finding mutations [4], sequence classifi-
cation [5], sequence alignment [6]. Many previous studies contributed to efficient
k-mer counting, such as Tallymer [7], Jellyfish [8], BFCounter [9], KMC [10],
DSK [11], KAnalyze [12], KMC 2 [13] and KCMBT [14]. In recent years, k-
mer counting is gaining momentum and has become an active topic in sequence
analysis community.

The k-mer counting algorithms developed so far have good performance.
Unfortunately, almost all of the previous algorithms rely on a fixed k to split the
given sequence(s) and output all possible contiguous subsequences along with
their frequencies. This leads to the inefficiency during the sequence analysis
for various values of k, since a user usually have to perform the k-mer counting
algorithm many times. For example, as shown in [15,16], at least 6 sizes (17-mer,
21-mer, 25-mer, 41-mer, 55-mer and 77-mer) are selected to count the k-mers.
In addition, Kurta et al. [7] used k-mers ranging from 10 to 500 to annotate
the plant genomes, which needs to manually run the k-mer counter 491 times.
Currently, there is no method that is able to automatically generate k-mers of
various lengths.

The frequent k-mers in protein sequences are often the conserved composi-
tion patterns reflecting structural and functional features [17]. Miranda et al. [18]
deeply analyzed the sequence specificity of pentatricopeptide repeat (PPR) pro-
teins by enriched k-mers. However, previous work on k-mer counting focuses
more on DNA sequences and less on protein ones, which hinders the identifica-
tion of conserved regions in protein sequences. Consequently, a major challenge
is how to design an effective algorithm to ensure that the k-mer counter outputs
all k-mers of various lengths and meanwhile such counter is suitable for both
DNA and protein sequences.

K-mer counting has been studied extensively, yet still efficient implementa-
tions take several hours or even days on large sequence databases. The inverted
index, in computer science, is an important data structure that stores a mapping
from content to its locations in a database file. Compared to the forward index
structure, the inverted index restructures the representative format of files and
contributes to a high efficiency of information retrieval, especially on large data-
bases. Inspired by the well applications of inverted index [19], this technique can
be explored to alleviate the efficiency problem encountered by previous k-mer
counting methods.

In this paper, we propose VLmer that has four steps to efficiently mine k-
mers of various lengths (i.e., vl-mers) in both DNA and protein sequences. In
the first step, the initial biological sequences are transformed to structure like
“(vl-mer, positions)” by the inverted index technique. In the second step, VLmer
uses a pattern-growth scheme to generate the candidates of frequent vl-mers. In
the third step, a few pruning techniques are explored to prune the unpromising
vl-mers. In our experiments, we compare VLmer to ConSpan, which is a modified
version of both CCSpan [20] and ConSgen [21] algorithms that are most related
to our work, in terms of mining efficiency.

188 J. Zhang et al.

2 Methods

2.1 Preliminaries

The term “k-mer” typically refers to the fixed-length contiguous subsequences.
Unfortunately, it’s quite difficult to pre-specify a proper length k to count k-
mers which have the promise to provide biological insights. We introduce an
alternative term “vl-mer” to extend the traditional definition of k-mer as follows.

Definition 1 (vl-mer). Given two sequences S1 = a1a2 · · · ai and S2 = b1b2 · · ·
bj, where |S1| ≤ |S2|, S1 is a vl-mer of S2 if S1 is a contiguous subsequence (i.e.,
substring) of S2.

Based on this definition, the term vl-mer refers to all the possible contiguous
subsequences (i.e., all the k-mers of various lengths) of a given sequence. Note
that, this extended definition of k-mer uses non-fixed-length instead of fixed-
length adopted in traditional definition to constraint the subsequences.

For a vl-mer s, it can be represented by a tuple (s, idx), where idx is the index
(i.e., position) of s in sequence database D. For example, assume the database D
consists of only a sequence S = CCTCCCGCCTCA, the tuple representation
of vl-mer s = CCTC is set {(CCTC, 0), (CCTC, 7)}.

Definition 2 (frequent vl-mer). Given a minimum support threshold σ, a
vl-mer s is frequent in sequence database D if SupD(s) ≥ σ.

For simplicity, we use notation vl-mer to denote frequent vl-mer if not explic-
itly stated.

We are now ready to formulate our problem. Given a sequence database D
and a support threshold σ, discover a complete set of vl-mers such that each of
which is frequent.

2.2 Inverted Projection

As we discussed earlier, the inverted index data structure is preferable to the
forward index one in terms of the speed of the query in information retrieval
domain, which motivates us to utilize such inverted index technique to transform
the input sequence for vl-mer mining. For clarity, we call inverted index data
structure inverted projection and revise the notion of it in sequence analysis
community as follows.

Definition 3 (inverted projection). Given a single sequence S as the input
sequence database D, suppose all distinct characters of S be a set I =
{i1, i2, · · · , im}. The inverted projection of S is a set R expressed in tuples,
denoted as (f,<f indexes>) such that (1) each tuple consists of a character
f (f ∈ I) and its position index(es) appearing in S, and (2) there is a one-
to-one correspondence between the f of tuple (f,<f indexes>) in R and the
element ik ∈ I, where 1 ≤ k ≤ m.

V L-mer Mining 189

Note that, unlike the forward index data structure, the inverted projec-
tion uses a set of (f,<f indexes>) pairs to equivalently represent the input
sequence. The element <f indexes> is a list consisting of one or more non-
negative integers, each of which corresponds to a position number of vl-mers f
in the original sequence. Table 1 shows the inverted projection of the sequence
S = CCTCCCGCCTCAGTTCGCGCCGCGCCTCGGCTTGGAACGC.
The shift of input sequence significantly reduces the number of scans of the
sequence, so as to minimize the computation cost during the mining process.

Table 1. An inverted projection of sequence S

Character Index list

C 0, 1, 3, 4, 5, 7, 8, 10, 15, 17, 19, 20, 22, 24, 25, 27, 30, 37, 39

T 2, 9, 13, 14, 26, 31, 32

G 6, 12, 16, 18, 21, 23, 28, 29, 33, 34, 38

A 11, 35, 36

2.3 Candidate Generation of vl-mers

Most k-mer counting algorithms, due to the forward index data structure, need
to split all single-length contiguous subsequences as k-mers and compute their
occurrence frequencies, rendering the counting operation to be costly. To the best
of our knowledge, instead of the forward index, an alternative but clever data
structure is the inverted projection. Therefore, we propose a pattern-growth app-
roach based on the inverted projection to generate candidates so as to efficiently
mine vl-mers. Based on this approach, each length-k candidate is easily produced
by the original sequence, frequent (k − 1)-mers and their indexes, rather than
using a n-gram model [22,23] to enumerate all the possible snippets of input
sequences.

2.4 Pruning Techniques

Upon generating a new candidate by the pattern-growth approach based on
the inverted projection, we want to immediately check whether or not it is a
distinct yet frequent vl-mer. We study some properties of frequent vl-mers in
this subsection, which underpin the design of pruning scenarios.

Definition 4 (max-suffix). Given two sequences s1 = a1a2 · · · ai and s2 =
b1b2 · · · bj, s1 is a max-suffix of s2, denoted as s1 �suf s2, if (1) |s1| � 1,
|s2| − |s1| = 1; and (2) a1 = b2, a2 = b3, · · · , ai = bj.

Theorem 1. Given a sequence s (|s| � 2), suppose s is frequent in sequence
database D, then the max-suffix of s is frequent in D.

190 J. Zhang et al.

Proof (PROOF). Letting F be a set consisting of all subsequences of s, then each
element of F , i.e., ∀s′ ∈ F is frequent by virtue of Theorem 1 in [21]. Letting
the max-suffix of s be ssuf , then ssuf satisfies ssuf ∈ F . Thus, ssuf is frequent.
The theorem holds immediately.

Lemma 1. Given a sequence s (|s| � 2) and a sequence database D, if there
exists no frequent max-suffix of s, i.e., SupD(ssuf) < σ holds, then s can be
safely pruned.

Proof (PROOF). The proof of the above lemma is obvious according to
Theorem 1, and thus it is omitted here.

By exploring some properties of vl-mers above, three effective pruning tech-
niques, repeated candidate pruning, max-suffix pruning, and support pruning,
are introduced to prune the unpromising vl-mers.

2.5 VLmer Algorithm

For delineating VLmer, we first introduce two data structures. First, the inverted
index data structure, namely (f,<f indexes>) is employed for storing the tem-
porary output vl-mers, where f is a vl-mer itself and f indexes represent its
indexes in original sequence database. The size of f ’s indexes indicates the fre-
quency of f . Second, the triple data structure (f, f.count,B) from [21] formalizes
the final output vl-mers, where f is also a vl-mer, f.count is the actual support
of f , and the last attribute variable “B” takes on the value “Y ” by default. The
vl-mers of F can be organized into a set {{F1}, {F2}, · · · , {Fi}} consisting of i
different partitions, each of which is a subset of vl-mers.

Algorithm 1. VLmer(S, σ)
Input: sequence S, support threshold σ

Fk−1 ← ∅; // initialize Fk−1 to store (k − 1)-mers
Fk ← ∅; // initialize Fk to store k-mers
Fsta ← ∅; // initialize Fsta to store all vl-mers
F ← ∅; // initialize F to store all patterns

1: Fk−1 ← 1-mer-gen(S, σ); // inverted projecting
2: Fsta ← sta-gen(Fk−1); // standard 1-mers
3: F ← Fsta; // add 1-mers
4: while Fk−1.count > 0 do
5: Fk ← k-mer-gen(S, Fk−1, σ); //generate k-mers
6: if Fk.count > 0 then
7: Fsta ← sta-gen(Fk); // standard k-mers
8: F ← ∪kFsta; // add standardized k-mers
9: end if

10: Fk−1 ← Fk;
11: end while
Output: F ;

V L-mer Mining 191

Algorithm 1 sketches VLmer that performs the frequent vl-mer mining. As
shown, two parameters include a sequence S as the input database and a sup-
port threshold σ. Global variable Fk−1 and Fk store the frequent (k − 1)-mers
and k-mers respectively. Each pattern of both Fsta and F is represented by the
inverted index structure (f,<f indexes>), while Fsta and F store vl-mers with
the triple data structure (f, f.count,B). During the mining process, Fsta is the
currently generated single-length vl-mers, and F saves all output vl-mers. Func-
tion 1-mer-gen() first produces an inverted projection by projecting the origi-
nal input sequence, and then generates the frequent 1-mers conforming to the
(f,<f indexes>) structure (line 1). Such 1-mers are transformed into the stan-
dard triple structure (f, f.count,B) (line 2), and then delivered to set F (line
3). Those generated 1-mers are viewed as frequent (k − 1)-mers to feed func-
tion k-mer-gen() for checking the longer k-mers (2-mers). For each non-empty
set Fk−1, i.e., Fk−1.count > 0 (line 4), k-mer-gen() produces a set of length-
specified frequent k-mers based on S, σ, and the generated (k −1)-mers (line 5).
Function k-mer-gen() continues its scan until the output set Fk is empty. When
a non-empty Fk is generated, each k-mer of them is transformed into the above
triple data structure and such a set Fk as a whole is added into set F (line 8).
The output of VLmer is such a pattern set F = {(f, f.count,B)|f.count ≥ σ}.
The main ideas of the above functions are detailed in Subsects. 2.2 to 2.4, and
thus we do not recount them here.

3 Results

3.1 Datasets

In our experiments, we used both DNA and protein sequences to study the
performance of the VLmer algorithm.

3.2 Effectiveness Study

Unlike previous k-mer counting algorithms, we can conveniently obtain all k-mers
of various lengths (i.e., all vl-mers) by performing VLmer algorithm only once.
Figure 1 depicts the characteristics of the vl-mers on DNA sequence AL607040.
Figure 1(a) shows the distribution of vl-mers against their length for support
thresholds (σs) varying from 2 to 6. Note that the smaller σ we choose, the more
vl-mers will be generated, which is consistent with previous k-mer counting or
sequential pattern mining. From Fig. 1(a), we can see that the number of vl-mers
equals or is close to 4l when the vl-mer-length l ≤ 5 for all test values of σ. These
vl-mers are almost the exhaustive enumeration of all possible combinations of the
four base-pares. Intuitively, such vl-mers may be impossible to reveal any bio-
logical significance and can be discarded during some sequence analysis, such as
sequence classification and TFBS identification. The peak values of the number
of vl-mers mainly locate at length 6 (σ ≥ 3) and length 7 (σ = 2), while they are
far less 46 and 47 respectively. These frequent vl-mers with enough lengths may
reflect some biological significance that has been demonstrated [24].

192 J. Zhang et al.

(a) Distribution of vl-mers (b) Maximal and mean lengths

Fig. 1. vl-mer analysis on DNA sequence AL607040.

(a) Distribution of vl-mers (b) Maximal and mean lengths

Fig. 2. vl-mer analysis on protein sequence XP 011987916.

The maximal and mean lengths of vl-mers generated by our algorithm are
also presented for varied support thresholds. From Fig. 1(b), the maximal length
of mined vl-mers increases from 20 to 91, with the support thresholds lowering
from 6 to 2. An interesting point is that when we set the support threshold as
σ = 2, the maximal length of vl-mers reaches 91. These long frequent snippets are
often the conserved regions. Figure 1(b) also shows the mean length of vl-mers
at each σ value, from which one can see that most mean lengths are consistent
with their corresponding σ positions of the curve-vertexes.

We also use protein sequence XP 011987916 as the test dataset, to report the
characters of mined vl-mers. Figure 2(a) shows the distribution of vl-mer with
varied support thresholds. Except for the snippets of σ = 2, all protein vl-mers
are relatively short at 16 and below, while the lengths of DNA vl-mers as shown
in Fig. 1(a) are far greater than 18. It is easy to see that most protein vl-mers fall
in the spectrum of 3-mers to 6-mers while DNA vl-mers at the range of 6-mers to
10-mers. Like the trend in Fig. 1(b), when the support threshold tends towards
a low value, for example, at σ = 2 as shown in Fig. 2(b), the length of protein
vl-mers increases dramatically.

V L-mer Mining 193

3.3 Efficiency Study

We assessed VLmer efficiency in both runtime and memory usage for the two real
datasets in terms of the support threshold. We compare our approach with Con-
Span, which is a modified version of both CCSpan [20] and ConSgen [21] algo-
rithms that are most related to our work. Figure 3(a) presents the running time of
the two algorithms at different support thresholds on dataset AL607040. The exe-
cution time of ConSpan increases from 52.02 to 356.85 s, while VLmer only takes
from 1.26 to 11.15 s. At a low support (σ = 2), VLmer can be 32 times faster than
ConSpan. When we raise the σ, for example, at σ = 6, our algorithm obtain a
better performance that reaches 41 times compared to ConSpan.

Figure 3(b) shows the comparison of the memory consumption between the
two algorithms on DNA dataset AL607040 shared with the above experiments.
In most cases, VLmer and ConSpan have very similar performance in memory
usage, while our algorithm requires a smaller memory space in comparison with
ConSpan when the σ value is lowered to 2.

(a) Runtime (b) Memory usage

Fig. 3. Runtime and memory usage comparison on DNA sequence AL607040.

(a) Runtime (b) Memory usage

Fig. 4. Runtime and memory usage comparison on protein sequence XP 011987916.

194 J. Zhang et al.

We also compare the running time and memory consumption between VLmer
and ConSpan on protein sequence XP 011987916. In Fig. 4(a), the execution time
of the two algorithms is illustrated. One can see that, the time consumption of
ConSpan ranges from 52.02 (σ = 6) to 356.85 (σ = 2) s, while VLmer only from
1.03 to 6.63 s. Obviously, VLmer is significantly faster than ConSpan. As shown
in Fig. 4(b), the two algorithms occupy a similar memory space.

From the above efficiency study, we conclude that VLmer has better overall
performance for both DNA and protein sequences compared to ConSpan.

4 Conclusion

In this paper, we introduced the problem of mining k-mers of various lengths,
i.e., vl-mers, in biological sequences. We presented a novel algorithm, VLmer,
which efficiently mines all distinct vl-mers. VLmer first utilizes the inverted
index technique to project the original sequences. Then, a pattern-growth app-
roach is adopted to generate potential vl-mers, each of which accurately records
their occurrence positions in the original sequences. Three pruning techniques,
i.e., repeated candidate pruning, max-suffix pruning, and support pruning, are
explored to remove the unpromising candidate vl-mers. All possible vl-mers
are generated by running VLmer only once. We used both DNA and protein
sequences to evaluate the the performance of VLmer. Our experimental results
demonstrated that VLmer is able to analyze both DNA and protein sequences.
In the future, we plan to study how to push gap constraint into VLmer in order
to mine conserved patterns.

Acknowledgements. This work was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences (No. XDB13040700); the National Nat-
ural Science Foundation of China (Nos. 91439103; 91529303; 61602460; 31200987);
Shanghai Municipal Natural Science Foundation (Nos. 17ZR1406900; 2016M601660);
the China Postdoctoral Science Foundation (Nos. 2016M600338; 2016M601660); and
the JSPS KAKENHI Grant (No. 15H05707).

References

1. Li, W., Freudenberg, J., Miramontes, P.: Diminishing return for increased mappa-
bility with longer sequencing reads: implications of the k-mer distributions in the
human genome. BMC Bioinform. 15(1), 2 (2014)

2. Bremges, A., Singer, E., Woyke, T., Sczyrba, A.: MeCorS: metagenome-enabled
error correction of single cell sequencing reads. Bioinformatics 32(14), 2199–2201
(2016)

3. Hamp, T., Rost, B.: Evolutionary profiles improve protein-protein interaction pre-
diction from sequence. Bioinformatics 31(12), 1945–1950 (2015)

4. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep
learning-based sequence model. Nat. Methods 12(10), 931–934 (2015)

5. Kim, D., Song, L., Breitwieser, F.P., Salzberg, S.L.: Centrifuge: rapid and sensitive
classification of metagenomic sequences. Genome Res. 26(12), 1721–1729 (2016)

V L-mer Mining 195

6. Horwege, S., Lindner, S., Boden, M., Hatje, K., Kollmar, M., Leimeister, C.-A.,
Morgenstern, B.: Spaced words and KMACS: fast alignment-free sequence com-
parison based on inexact word matches. Nucleic Acids Res. 42, W1–W7 (2014)

7. Kurtz, S., Narechania, A., Stein, J.C., Ware, D.: A new method to compute k-mer
frequencies and its application to annotate large repetitive plant genomes. BMC
Genom. 9(1), 517 (2008)

8. Marçais, G., Kingsford, C.: A fast, lock-free approach for efficient parallel counting
of occurrences of k-mers. Bioinformatics 27(6), 764–770 (2011)

9. Melsted, P., Pritchard, J.K.: Efficient counting of k-mers in DNA sequences using
a bloom filter. BMC Bioinform. 12(1), 1 (2011)

10. Deorowicz, S., Debudaj-Grabysz, A., Grabowski, S.: Disk-based k-mer counting on
a PC. BMC Bioinform. 14(1), 1 (2013)

11. Rizk, G., Lavenier, D., Chikhi, R.: DSK: k-mer counting with very low memory
usage. Bioinformatics 29(5), 652–653 (2013)

12. Audano, P., Vannberg, F.: Kanalyze: a fast versatile pipelined k-mer toolkit. Bioin-
formatics 30(14), 2070–2072 (2014)

13. Deorowicz, S., Kokot, M., Grabowski, S., Debudaj-Grabysz, A.: KMC 2: fast and
resource-frugal k-mer counting. Bioinformatics 31(10), 1569–1576 (2015)

14. Mamun, A.-A., Pal, S., Rajasekaran, S.: KCMBT: a k-mer Counter based on Mul-
tiple Burst Trees. Bioinformatics 32(18), 2783–2790 (2016)

15. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G.,
Kristiansen, K., et al.: De novo assembly of human genomes with massively parallel
short read sequencing. Genome Res. 20(2), 265–272 (2010)

16. Shariat, B., Movahedi, N.S., Chitsaz, H., Boucher, C.: HyDA-Vista: towards opti-
mal guided selection of k-mer size for sequence assembly. BMC Genom. 15(10), S9
(2014)

17. Degnan, P.H., Ochman, H., Moran, N.A.: Sequence conservation and functional
constraint on intergenic spacers in reduced genomes of the obligate symbiont buch-
nera. PLoS Genet. 7(9), e1002252 (2011)

18. Miranda, R.G., Rojas, M., Montgomery, M.P., Gribbin, K.P., Barkan, A.: RNA
binding specificity landscape of the pentatricopeptide repeat protein PPR10. RNA
23(4), 586–599 (2017)

19. Zhang, R., Xue, R., Yu, T., Liu, L.: Dynamic and efficient private keyword search
over inverted index-based encrypted data. ACM Trans. Internet Technol. (TOIT)
16(3), 21 (2016)

20. Zhang, J., Wang, Y., Yang, D.: CCSpan: mining closed contiguous sequential pat-
terns. Knowl.-Based Syst. 89, 1–13 (2015)

21. Zhang, J., Wang, Y., Zhang, C., Shi, Y.: Mining contiguous sequential generators
in biological sequences. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(5), 855–867
(2016)

22. Zhang, J., Wang, Y., Wei, H.: An interaction framework of service-oriented ontol-
ogy learning. In: Proceedings of the 21st ACM International Conference on Infor-
mation and Knowledge Management, pp. 2303–2306. ACM (2012)

23. Zhang, J., Wang, Y., Yang, D.: Automatic learning common definitional patterns
from multi-domain Wikipedia pages. In: 2014 IEEE International Conference on
Data Mining Workshop (ICDMW), pp. 251–258. IEEE (2014)

24. Leung, K.-S., Wong, K.-C., Chan, T.-M., Wong, M.-H., Lee, K.-H., Lau, C.-K.,
Tsui, S.K.: Discovering protein-DNA binding sequence patterns using association
rule mining. Nucleic Acids Res. 38(19), 6324–6337 (2010)

	Mining K-mers of Various Lengths in Biological Sequences
	1 Introduction
	2 Methods
	2.1 Preliminaries
	2.2 Inverted Projection
	2.3 Candidate Generation of vl-mers
	2.4 Pruning Techniques
	2.5 VLmer Algorithm

	3 Results
	3.1 Datasets
	3.2 Effectiveness Study
	3.3 Efficiency Study

	4 Conclusion
	References

